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1. (P.179 Q3) We proceed by induction on n:
Base step n = 1: This reduces to usual Leibniz rule (6.13(c))

Inductive step: Suppose for some N € N, the statement holds for all n < N. When n = N (the variable z is
suppressed for simplicity)
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now by inductive hypothesis for n = N — 1 on f’g and fg’ respectively, we have
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Therefore, the statement holds for n = N. Hence by induction the statement holds for all n € N.

2. (P.179 Q4) Consider f(z) =+/1+ x for x > 0. Then f is twice differentiable with

/ o 1 () = — 1
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and hence for all y > 0, 0 > f”(y) > —1

Now given any = > 0, let I = [0,z] and consider f defined on [0,z]; f,f’ are continuous on [0,z] and
f" exists on (0, ). Apply Taylor’s theorem (Theorem 6.4.1) with z¢ = 0, there exists ¢ € (0, ) such that

f(z) = £(0)+ f'(0)z + %xz



More explicitly, this implies
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Since ¢ > 0 and 22 > 0, 0 > @xz > —%xz , and therefore
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; 7 8, note that h is differentiable on R\{0} with h'(z) = ;h(w) - We
ST =

proceed by establishing the following claims:

(i) for all k € N, hmkf)—
=0

. (P.179 Q10) Let h(x) =

(n)
(i) for all n € N, for all k € N, lim " k(x) =0
z—0 x

(iii) for all n € N, n th derivative of h at 0 exists and h(™(0) = 0.

Proof of (i): Induction on k:
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where we have applied L’Hospital’s rule in the second equality (careful justifications are left as exercises for
readers)

Inductive step: Suppose for some K € N, the statement holds for all k < K.
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Again, we have applied L'Hospital’s rule in the second equality.

Therefore, the statement holds for £ = K. Hence by induction the statement holds for all £ € N.

Proof of (ii): Induction on n:

‘ L . h(x) 2h(z)
Base step n = 1: for all k € N ilg% o iﬁo 23tk

=0 (by (1)

Inductive step: Suppose for some N € N, the statement holds for all n < N + 1.
2

When n = N + 1, ANV (z) = (B'(z))V) = (;h(m))(m

By generalised Leibniz rule (Section 6.4 Q3), we have
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hypothesis.
Therefore, the statement holds for n = N 4+ 1. Hence by induction the statement holds for all n € N.

Proof of (iii): Induction on n:

Base step n = 1: lim 1) = M0)

lim ——F— = 0 by (i). Hence h (0) = 0.

Inductive step: Suppose for some N € N, the statement holds for all n < N + 1.
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tive of h at 0 exists and AN +1(0) = 0.

When n =N +1, lin%) = 0 by (ii) with & = 1. Therefore, (N + 1) th deriva-
—

Therefore, the statement holds for n = N + 1. Hence by induction the statement holds for all n € N.

Now fix © # 0, g = 0 and apply taylor’s theorem (Theorem 6.4.1) to h, then for each n € N, h(z) =
P, (z) + Ry (x).

By (iii), AV (0) = 0 for all I € N. Therefore, P,(z) = 0, and hence h(z) = R, (z) for all n € N.
Since h(z) # 0, R, (x) does not converge to 0 as n — oo.
Remark. The key point of this question is to express AV T1 in terms of a sum of its lower derivatives with rational

functions as coefficients. Many students recognised this, but were not able to formulate this in precise term or
providing enough justification for this.



